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Social Optima in Robust Mean Field LQG
Control: From Finite to Infinite Horizon
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Abstract—This article studies social optimal control of
mean field linear-quadratic-Gaussian models with uncer-
tainty. Specially, the uncertainty is represented by an un-
certain drift, which is common for all agents. A robust
optimization approach is applied by assuming all agents
treat the uncertain drift as an adversarial player. In our
model, both dynamics and costs of agents are coupled by
mean field terms, and both finite- and infinite-time horizon
cases are considered. By examining social functional vari-
ation and exploiting person-by-person optimality principle,
we construct an auxiliary control problem for the generic
agent via a class of forward-backward stochastic differen-
tial equation system. By solving the auxiliary problem and
constructing consistent mean field approximation, a set of
decentralized control strategies is designed and shown to
be asymptotically optimal.

Index Terms—Forward-backward stochastic differential
equation (FBSDE), linear quadratic optimal control, mean
field control, model uncertainty, social functional variation.

I. INTRODUCTION

A. Background and Motivation

M EAN field games and control have drawn increasing at-
tention in many fields, including system control, applied

mathematics, and economics [4], [6], [12]. The mean field game
involves a very large population of small interacting players with
the feature that while the influence of each one is negligible, the
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impact of the overall population is significant. By now, mean
field games and control have been intensively studied in the
linear-quadratic-Gaussian (LQG) framework [17], [18], [24],
[29], [37], and there is a large body of works on nonlinear
models [7], [20], [23]. Huang et al. designed ε-Nash equilibrium
strategies for LQG mean field games with discount costs based
on the proposed Nash certainty equivalence (NCE) approach
[17], [18]. The NCE approach was then applied to the cases with
long run average costs [24] and with Markov jump parameters
[38], respectively. Lasry and Lions independently introduced
the model of mean field games and studied well-posedness of
limiting partial differential equations [23]. For further literature,
readers are referred to [16], [38], and [40] on mean field games
with major players, [7] on probabilistic analysis of mean field
games, and [42] on the oblivious equilibrium in dynamic games.

Besides noncooperative games, social optima in mean field
models have also drawn much attention. The social optimum
control refers to that all the players cooperate to optimize the
common social cost—the sum of individual costs, which is
usually regarded as a type of team decision problem [13]. Huang
et al. considered social optima in mean field LQG control,
and provided an asymptotic team-optimal solution [19]. Wang
and Zhang investigated a mean field social optimal problem
where a Markov jump parameter appears as a common source
of randomness [41]. Also, see [21] for social optima in mixed
games, [2] for team-optimal control with finite population and
partial information, and [31] for mean field limit of dynamic
team problems.

Mathematical models can only be approximations of the real
world. Actually, some parts of a model may be inexact. Thus,
it is worthwhile to study the mean field control with model
uncertainty [3]. The works [14], [15], [36] investigated the mean
field games and control with a global uncertainty term. The
“hard constraint” case (the disturbance is specified with a bound)
was considered in [14] under which the substantial difficulty
arises after the Lagrange multiplier is introduced. Huang et al.
[15] and [36] adopted the “soft constraint” approach ([3], [5],
[9]) by removing the bound of the disturbance while the effort
is penalized in the cost function. The works by Moon et al.
[29], [35] considered the case that each agent is paired with
the local disturbance as an adversarial player, and provided
an ε-Nash equilibrium by tackling a Hamilton–Jacobi–Isaacs
equation combined with a fixed-point analysis.

B. Challenge and Contribution

This article investigates mean field LQG social optimum
control with a common uncertain drift, where both dynamics
and costs of agents involve mean field coupled terms. To address
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the model uncertainty, a minus quadratic penalty term of drift
is incorporated into the cost functional. There exist some sub-
stantial challenges in studying the problem. First, different from
[15] and [35], the socially optimal control with respect to drift
uncertainty is a high-dimensional optimization problem with
indefinite state weights. The corresponding convexity condition
is very hard to verify. Second, by social variational derivation,
the resulting limit system is governed by a controlled forward-
backward stochastic differential equation (FBSDE). To design
decentralized strategies, we need to solve the auxiliary optimal
control problem subject to an FBSDE system. Meanwhile, the
asymptotic optimality analysis is different from general mean
field LQG problems since two sequential optimizations are
involved in the soft control setup. Third, for the social optimum
problem in the infinite horizon, we face with tackle infinite-
horizon FBSDEs and relevant optimal control problems.

In this article, the social optimum control for the robust mean
field LQG model is tackled by using stochastic maximum prin-
ciple [44]–[46]. For the finite-horizon problem, we first obtain
some low-dimensional convexity conditions and a set of FBS-
DEs by analyzing the variation of the centralized maximization
cost to drift uncertainty. With the help of the Riccati equation, we
further obtain a feedback type of the “worst-case” drift for the so-
cial optimum problem. Next, we construct an auxiliary optimal
control problem based on the social variational derivation and the
person-by-person optimality principle. By solving the auxiliary
problem combined with consistent mean field approximations,
a set of decentralized control laws is designed and further shown
to be asymptotically robust social optimal by perturbation anal-
ysis. Finally, from asymptotic analysis to FBSDEs, we design
decentralized strategies and show their robust optimality for the
infinite-horizon social optimum problem.

The main contributions of the article are summarized as
follows.

1) Social optimum control is studied for mean field models
with a common uncertain drift, where coupled terms
are included in both costs and dynamics of agents. By
FBSDE and Riccati equation approaches, we design a set
of decentralized feedback control laws.

2) By examining the social cost variation, we give low-
dimensional convexity conditions and asymptotic con-
vexity analysis for robust social optimum problems.

3) From consistency requirements in mean field approxima-
tions, a system of differential equations is derived. The
existence condition of solutions to consistency equations
is characterized by a Riccati equation, instead of fixed-
point analysis.

4) From perturbation analysis to FBSDE, decentralized
strategies are shown to have asymptotic robust optimality.

5) By analyzing asymptotic behavior of FBSDE, decen-
tralized strategies for the infinite-horizon problem are
designed and further shown be robust social optimal.

C. Organization and Notation

The organization of the article is as follows. In Section II,
we consider the finite-horizon social optimization problem with
drift uncertainty. By variational analysis, the centralized control
with respect to drift uncertainty is obtained. Then, an auxil-
iary optimal control problem is constructed based on person-
by-person optimality. By solving this problem combined with

consistent mean field approximations, a set of decentralized
strategies is designed and further proved to be robust social
optimal. Section III tackles the infinite-horizon social optimum
problem. In Section IV, a numerical example is provided to
verify the result. Section V concludes the article.

Notation: Suppose that (Ω,F , {Ft}0≤t≤T ,P ) is a complete
filtered probability space. Denote by ⊗ the Kronecker product,
Im m-dimensional identity matrix. We use ‖ · ‖ to denote the
norm of a Euclidean space, or the Frobenius norm for matrices.
For a symmetric matrix Q and a vector z, ‖z‖2Q = zTQz;
for two vectors x, y, 〈x, y〉 = xT y. For a matrix (vector) M ,
MT denotes its transpose, M > 0 means that M is posi-
tive definite. Let L2

F (0, T ;R
k) denote the space of all Rk-

valued Ft-progressively measurable processes x(·) satisfying
E

∫ T

0 ‖x(t)‖2dt < ∞, and L2
F, ρ2

(0,∞;Rk) denote the space

of all Rk-valued Ft-progressively measurable processes x(·)
satisfying E

∫ ∞
0 e−ρt‖x(t)‖2dt < ∞.C([0, T ],Rk) is the space

of all Rk-valued functions defined on [0, T ], which are contin-
uous; Cρ/2([0,∞),Rk) is a subspace of C([0,∞),Rk) which
is given by {f | ∫ ∞

0 e−ρt‖f(t)‖2dt < ∞}. For convenience of
presentation, we use C (or C1, C2, . . .) to denote a generic
constant, which may vary from place to place.

II. ROBUST MEAN FIELD SOCIAL CONTROL OVER A

FINITE HORIZON

Consider a large population systems with N agents. The ith
agent evolves by the following stochastic differential equation:

dxi(t) = [Axi(t) +Bui(t) +Gx(N)(t) + f(t)]dt

+ σdWi(t), 1 ≤ i ≤ N (1)

where xi ∈ Rn and ui ∈ Rr are the state and the input of agent
i, respectively. x(N)(t) = 1

N

∑N
j=1 xj(t). {Wi, 1 ≤ i ≤ N} are

a sequence of mutually independent d-dimensional Brownian
motions. f ∈ L2

F (0, T ;R
n) is an unknown disturbance, which

reflects the effect imposed to each agent by the eternal environ-
ment. The cost function of agent i is given by

JF
i (u) =

1

2
E

∫ T

0

{∥∥xi(t)− Γx(N)(t)− η
∥∥2

Q

+‖ui(t)‖2R1
− ‖f(t)‖2R2

}
dt+

1

2
E‖xi(T )‖2H (2)

where Q,R1, R2, H ∈ Rn×n are symmetric, Γ ∈ Rn×n and
η ∈ Rn. u = {u1, . . . , uN}. Take {Ft}0≤t≤T as the natural
filtration generated by the Nd-dimensional Brownian motion
(W1, . . . ,WN ). Denote JF

soc(u) =
∑N

i=1 J
F
i (u). Let the social

cost under the worst-case disturbance be

Jwo
soc(u) = sup

f∈UF
c

JF
soc(u, f). (3)

Define the centralized control set as

UF
c =

{
ui| ui(t) ∈ σ(xi(0),Wi(s), 0 ≤ s ≤ t, 1 ≤ i ≤ N)

E

∫ T

0

‖ui(t)‖2dt < ∞
}

and the decentralized control set as

UF
d,i =

{
ui | ui(t) ∈ σ(xi(s),Wi(s), 0 ≤ s ≤ t)

E

∫ T

0

‖ui(t)‖2dt < ∞
}
.
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Initially, we consider the following problem.
Problem (PF): Seek a set of centralized control laws

(ǔ1, . . . , ǔN ) to minimize the social cost under the worst-case
disturbance for System (1)–(3), i.e., infui∈UF

c
Jwo
soc(u).

Due to accessible information restriction and high computa-
tional complexity, one generally cannot attain centralized social
optima, but asymptotic social optima under decentralized con-
trol, i.e., the optimality loss tends to 0, when N → ∞. Thus, we
mainly study the following problem in this article.

Problem (PFa): Seek a set of decentralized control laws
(û1, . . . , ûN ) in UF

d,i to asymptotically optimize the social cost
under the worst-case disturbance for System (1)–(3), i.e.,∣∣∣Jwo

soc(û)− inf
ui∈UF

c

Jwo
soc(u)

∣∣∣ = o(1).

Remark 2.1: Different from [15] and [35], we assume the
disturbance f is a common stochastic process. Here, f may
denote the impact from tax, subsidy, or physical factors. Thus,
agents may be conservative to anticipate the disturbance would
use the information of all agents to play against them.

Remark 2.2: The notations JF
i , JF

soc, and Jwo
soc are actually

dependent on N . However, for sake of expression simplicity,
here we will not explicitly write out N . This is also applicable
to J̌F

soc, Ji, Jsoc, . . . in the following sections.
We make two assumptions as follows.
(A0) {xi(0)} are independent random variables with the same

mathematical expectation. xi(0) = xi0, Exi(0) = x̄0, 1 ≤ i ≤
N . There exists a constant C0 such that max1≤i≤N E‖xi0‖2 <
C0. Furthermore, {xi0, i = 1, . . . , N} and {Wi, i = 1, . . . , N}
are independent of each other.

(A1) Q ≥ 0, R1 > 0, R2 > 0, and H ≥ 0.
From now on, the time variable t might be suppressed if

necessary and no confusion occurs.

A. Control Problem With Respect to the Disturbance

Let ui = ǔi ∈ UF
c , i = 1, . . . , N be fixed. The optimal con-

trol problem with respect to the disturbance is as follows:

(P1) maximizef∈UF
c
JF
soc(ǔ, f).

Clearly, (P1) is equivalent to the following problem:

(P1′)minimizef∈UF
c
J̌F
soc(f)

where

J̌F
soc(f) =

1

2

N∑
i=1

E

∫ T

0

{
−∥∥xi − Γx(N) − η

∥∥2

Q
+ ‖f‖2R2

}
dt

− 1

2
E‖xi(T )‖2H .

Let x = (xT
1 , . . . , x

T
N )T ,u = (uT

1 , . . . , u
T
N )T ,1 = (1, . . . ,

1)T ,W = (WT
1 , . . . ,WT

N )T ,A = diag(A, . . . , A),B = diag
(B, . . . , B), σ̂ = diag(σ, . . . , σ),H = diag(H, . . . ,H), Q̂ =

diag{Q, . . . , Q} − 1
N 11T ⊗Ψ, and η̂ = 1⊗ η̄, where Ψ

Δ
=

ΓTQ+QΓ− ΓTQΓ and η̄
Δ
= Qη − ΓTQη. We can write

Problem (P1′) as to minimize

J̌F
soc(f) =

1

2
E

∫ T

0

(
−xT Q̂x+ 2η̂Tx+NfTR2f

)
dt

− 1

2
E[xT (T )Hx(T )]

subject to

dx(t) = Ǎx(t)dt+Bu(t)dt+ 1⊗ f(t)dt+ σ̂dW(t).

where Ǎ
Δ
= A+ 1

N (11T ⊗G).
For the further existence analysis, we introduce the following

assumptions:
(A2) Problem (P1′) is convex in f ;
(A2′) Problem (P1′) is uniformly convex in f .
Below are some necessary and sufficient conditions to ensure

(A2) or (A2′).
Proposition 2.1: The following statements are equivalent:
i) Problem (P1′) is convex in f .
ii) For any f ∈ UF

c∫ T

0

(
−yT Q̂y +NfTR2f

)
dt− ‖y(T )‖2H ≥ 0

where y ∈ RnN satisfies
dy = (Ǎy + 1⊗ f)dt, y(0) = 0.

iii) For any f ∈ UF
c∫ T

0

{
−∥∥(I − Γ)yi

∥∥2

Q
+ ‖f‖2R2

}
dt− ‖yi(T )‖2H ≥ 0

where for i = 1, 2, . . ., N , yi satisfies

dyi = [Ayi +Gy(N) + f ]dt, yi(0) = 0. (4)
Proof: (i) ⇔ (ii) is given in [15] and [25]. From (4), we have

y1 = y2 = · · · = yN = y(N). Thus,∫ T

0

(
−yT Q̂y +NfTR2f

)
dt− ‖y(T )‖2H

=

N∑
i=1

∫ T

0

(
−∥∥yi − Γyi

∥∥2

Q
+ ‖f‖2R2

)
dt−

N∑
i=1

‖yi(T )‖2H

= N

[∫ T

0

(
−∥∥(I−Γ)yi

∥∥2

Q
+‖f‖2R2

)
dt−‖yi(T )‖2H

]
(5)

which implies that (ii) is equivalent to (iii). �
Proposition 2.2: The following statements are equivalent
i) Problem (P1′) is uniformly convex in f .
ii) There exists δ > 0 such that∫ T

0

(
−yT Q̂y +NfTR2f

)
dt− ‖y(T )‖2H ≥ δN

∫ T

0

‖f‖2dt.
iii) The equation

Ṗ+ ǍTP+PǍ− Q̂−P(1⊗ I)(NR2)
−1(1T ⊗ I)P = 0

with P(T ) = −H admits a solution in C([0, T ];RnN ).
iv) The following equation admits a solution in C([0, T ];Rn)

Ṗ + (A+G)TP + P (A+G)− PR−1
2 P

− (I − Γ)TQ(I − Γ) = 0, P (T ) = −H.

v) For any t ∈ [0, T ],det[(0, I)eAt(0, I)T ] > 0, where

A =

(
A+G+R−1

2 H −R−1
2

A21 −(A+G+R−1
2 H)T

)

with A21 = HR−1
2 H + (I − Γ)TQ(I − Γ) + (A+G)TH +

H(A+G).
Proof: (i)⇔(ii) is implied from [15] and [25]. (i)⇔(iii) is given

by [33, Th. 4.5]. By (5) and (ii), we have∫ T

0

{
−‖yi‖2Q(I−Γ) + ‖f‖2R2

}
dt− ‖yi(T )‖2H ≥ δ

N

∫ T

0

‖f‖2dt.
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By [33, Th. 4.5], we obtain (ii)⇔(iv), which further implies
(i)⇔(iv). (iv)⇔(v) is given by [15] and [27]. �

By variational analysis, we obtain necessary and sufficient
conditions for the existence of centralized minimizer of (P1′).

Theorem 2.1: Assume (A0)–(A1) hold. (P1′) has a mini-
mizer inUF

c if and only if (A2) holds and the following equations
admit a set of solutions (x̌i, p̌i, β̌

j
i , i, j = 1, . . . , N):⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dx̌i = (Ax̌i +Bǔi +Gx̌(N)−R−1
2 p̌

(N)
j )dt+σdWi

dp̌i = − [AT p̌i +GT p̌
(N)
j −Qx̌i +Ψx̌(N) + η̄]dt

+
∑N

j=1
β̌j
i dWj

x̌i(0) = xi0, p̌i(T ) = −Hx̌i(T ), 1 ≤ i ≤ N

(6)

where p̌(N) = 1
N

∑N
j=1 p̌j , and furthermore the minimizer is

f̌ = −R−1
2 p̌(N).

Proof: Suppose that f̌ is a candidate of the minimizer of (P1′).
Denote by x̌i the state of agent i under the control ǔi and the
drift f̌ . For any f ∈ UF

c and ε ∈ R, let fε = f̌ + εf . Let xε
i be

the solution of the following perturbed state equation:

dxε
i =

(
Axε

i +Bǔi + f̌ + εf +
G

N

N∑
i=1

xε
i

)
dt+ σdWi

with xε
i (0) = xi0, i = 1, 2, . . ., N . Let yi = (xε

i − x̌i)/ε, and
y(N) =

∑N
i=1 yi/N . It can be verified that yi satisfies (4). Let

{p̌i, β̌j
i , i, j = 1, . . . , N} be a set of solutions to BSDE in (6).

Then, by Itô’s formula,

− E〈Hx̌i(T ), yi(T )〉

= E

∫ T

0

[
〈−(AT p̌i +GT p̌

(N)
j −Qx̌i +Ψx̌(N) + η̄), yi〉

+ 〈pi, Ayi +Gy(N)f〉
]
dt. (7)

We have

J̌F
soc(f̌ + εf)− J̌F

soc(f̌) = εΛ1 +
ε2

2
Λ2 (8)

where

Λ1
Δ
=

N∑
i=1

E

∫ T

0

[〈−Q(x̌i−(Γx̌(N)+η)), yi−Γy(N)
〉

+〈R2f̌ , f〉
]
dt−

N∑
i=1

E〈Hx̌i(T ), yi(T )〉

Λ2
Δ
=

N∑
i=1

E

∫ T

0

{
−∥∥yi − Γy(N)

∥∥2

Q
+ ‖f‖2R2

dt− ‖yi(T )‖2H
}
.

Note that
N∑
i=1

E

∫ T

0

〈−Q(x̌i − (Γx̌(N) + η)),Γy(N)
〉
dt

= E

∫ T

0

〈
−ΓTQ

N∑
i=1

(
x̌i − (Γx̌(N) + η)

)
,
1

N

N∑
j=1

yj

〉
dt

=
N∑
j=1

E

∫ T

0

〈− ΓTQ
(
(I − Γ)x̌(N) − η

)
, yj

〉
dt.

From (7), one can obtain that

Λ1 = E
N∑
i=1

∫ T

0

[〈−Q(x̌i − (Γx̌(N) + η))

yi − Γy(N)
〉
+ 〈R2f̌ , f〉

]
dt

+

N∑
i=1

E

∫ T

0

[
〈−(AT p̌i +GT p̌

(N)
j −Qx̌i +Ψx̌(N) + η̄),

yi〉+ 〈pi, Ayi +Gy(N)f〉
]
dt.

= E

∫ T

0

〈
NR2f̌ +

N∑
i=1

pi, f

〉
dt

From (8), f̌ is a minimizer to Problem (P1′) if and only ifΛ2 ≥ 0
and Λ1 = 0. By Proposition 2.1, Λ2 ≥ 0 if and only if (A2)
holds. Indeed, if (A2) does not hold, the minimization problem
is ill-posed (see, e.g., [33]). Λ1 = 0 is equivalent to

f̌ = −R−1
2 p̌(N).

Thus, we have the optimality system (6). Namely, Λ1 = 0 if and
only if (6) admits a solution (x̌i, p̌i, β̌

j
i , i, j = 1, . . . , N). �

Let ǔ(N) = 1
N

∑N
i=1 ǔi, and p̌(N) = 1

N

∑N
i=1 p̌i. It follows

from (6) that⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dx̌(N) =
(
(A+G)x̌(N) +Bǔ(N) −R−1

2 p̌(N)
)
dt

+ 1
N

∑N
i=1 σdWi

dp̌(N) = −[
(A+G)T p̌(N) + (Ψ−Q)x̌(N) + η̄

]
dt

+ 1
N

∑N
i=1

∑N
j=1 β̌

j
i dWj

x̌(N)(0) = 1
N

∑N
i=1 xi0, p̌

(N)(T ) = −Hx̌(N)(T ).

(9)

Proposition 2.3: The FBSDE (6) admits a set of adapted
solutions (x̌i, p̌i, i = 1, . . . , N) if and only if (9) admits an
adapted solution (x̌(N), p̌(N)).

Proof: If (9) admits an adapted solution (x̌(N), p̌(N)), then (6)
is decoupled. The existence of a set of solutions to (6) follows.
The part of necessity is straightforward. �

We further discuss the optimal feedback control of (P1′).
Let p̌(N)(t) = P (t)x̌(N)(t) + š(t), t ≥ 0, whereP ∈ Rn×n and
š ∈ Rn. Then, by (9), we have

dp̌(N) = P

[
(A+G)x̌(N) +Bǔ(N) −R−1

2 p̌(N))dt

+
1

N

N∑
i=1

σdWi

]
+ Ṗ x̌(N)dt+ dš

= − [(A+G)T (P x̌(N) + š) + (Ψ−Q)x̌(N)

+ η̄]dt+
1

N

N∑
i=1

N∑
j=1

β̌j
i dWj .

This implies

Ṗ + (A+G)TP + P (A+G)− PR−1
2 P

− (I − Γ)TQ(I − Γ) = 0, P (T ) = −H (10)

dš+ [(A+ Ḡ)T š+ PBǔ(N) + η̄]dt
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+
1

N

N∑
i=1

N∑
j=1

( σ

N
− β̌j

i

)
dWj = 0, š(T ) = 0 (11)

where Ḡ
Δ
= G−R−1

2 P .
By the local Lipschitz continuous property of the quadratic

function, (10) must admit a unique local solution in a small time
duration [T0, T ]. The global existence of the solution can be
referred to [1] and [11]. From Proposition 2.2, we obtain that
under (A2′), (10) has a unique solution in C([0, T ],Rn×n).

Theorem 2.2: Under (A0), (A1), and (A2′), Problem (P1′)
has a minimizer

f̌(t) = −R−1
2 [P (t)x̌(N)(t) + š(t)], t ≥ 0 (12)

where P and š are solutions of (10) and (11), respectively.
Proof: Under (A2′), (10) admits a unique solution P , which

implies (11) has a unique solution š in C([0, T ],Rn). By [27,
Theorem 2.4.1], (9) admits a unique solution (x̌(N), p̌(N)),
where p̌(N) = P x̌(N) + š. From Proposition 2.3, (6) is solvable.
This with Theorem 2.1 completes the proof. �

Remark 2.3: From the above analysis, (A2′) is sufficient for
solvability of (6). Indeed, from [27], (A2′) is also a necessary
condition to ensure solvability of (6) holds for any ǔi ∈ UF

c .

B. Distributed Strategy Design

After the “worst-case” drift f̌ is applied, we have the following
optimal control problem.

(P2): MinimizeJF
soc(u, f̌(u)) over {ui ∈ UF

c , i = 1, . . . , N},
where

dxi = [Axi +Bui +Gx(N)−R−1
2 (Px(N) + s)]dt

+ σdWi, 1 ≤ i ≤ N (13)

ds = −
[
(A+ Ḡ)T s+ PBu(N) + η̄

]
dt

+
1

N

N∑
i=1

N∑
j=1

(
βj
i −

σ

N

)
dWj , s(T ) = 0 (14)

JF
soc(u) =

1

2

N∑
i=1

E

∫ T

0

{∥∥xi − Γx(N) − η
∥∥2

Q
+ ‖ui‖2R1

−‖Px(N) + s‖2
R−1

2

}
dt+

1

2
E‖xi(T )‖2H . (15)

We first show that Problem (P2) has the property of uniformly
convexity under certain conditions.

Lemma 2.1: Assume that (A0), (A1), and (A2′) hold. Then,
there exists a constant C0 > 0 with R1 > C0I and R2 > C0I
such that (P2) is uniformly convex in u, where ui ∈ UF

c .
Proof: Denote Q̄ = diag{Q, · · · , Q} − 1

N 11T ⊗ (Ψ +

PR−1
2 P ), R1 = diag{R1, . . . , R1}, Ā = diag{A, . . . , A}+

1
N 11T ⊗ (G−R−1

2 P ). By a similar argument with [25], we
obtain that Problem (P2) is uniformly convex if for any ui ∈ UF

c

E

∫ T

0

(
zT Q̄z+ uTR1u−Ns̀TR−1

2 s̀
)
dt

+ E‖z(T )‖2H ≥ δE

∫ T

0

‖u‖2dt

where z ∈ RnN and s̀ ∈ Rn satisfy

dz = (Āz+Bu− 1⊗R−1
2 s̀)dt, z(0) = 0 (16)

ds̀ = −
[
(A+ Ḡ)T s̀+

1

N
PB(1T ⊗ I)u

]
dt

+
1

N

N∑
i=1

N∑
j=1

β̀j
i dWj , s̀(T ) = 0. (17)

By [44, Ch. 7] and (17)

E

∫ T

0

‖s̀(t)‖2dt ≤ C1

N2
E

∫ T

0

‖1T ⊗ I‖2‖u(t)‖2dt

≤ C1

N
E

∫ T

0

‖u(t)‖2dt. (18)

This with (16) leads to E
∫ T

0 ‖z‖2dt ≤ C2E
∫ T

0 ‖u‖2dt. Note
that

λmin(Q̄) ≥ λmin(Q)− [λmax(Ψ)+λmax(PR−1
2 P )]

≥ − [λmax(Ψ) + λmax(PR−1
2 P )]

where λmin(Q) and λmax(Q) are smallest and largest eigenvalues
of Q, respectively. From this with (18), there exists δ > 0 and
C0 > 0 such that for R1 > C0I and R2 > C0I

E

∫ T

0

(
zT Q̄z+uTR1u−Ns̀TR−1

2 s̀
)
dt+ E‖z(T )‖2H

≥ E

∫ T

0

[
uT (R1 − C0InN )u

]
dt ≥ δE

∫ T

0

(uTu)dt.

�
1) Social Variational Derivation: Note that the social op-

timum implies the person-by-person optimality [13]. We now
provide a transformation of the original social optimum prob-
lem by variational derivation and person-by-person optimal-
ity. Suppose that ǔ = (ǔ1, . . . , ǔN ) is a minimizer to Problem
(P2), where ǔj ∈ UF

c . Let x̌j correspond to ǔj , j = 1, . . . , N

and x̌(N) = 1
N

∑N
j=1 x̌j . Let š correspond to ǔ1, . . ., ǔN .

Fix ǔ−i = (ǔ1, . . . , ǔi−1, ǔi+1, . . . , ǔN ), and perturb ui. De-
note δui = ui − ǔi, δxj = xj − x̌j , δx(N) = 1

N

∑N
j=1 δxj and

δs = s− š. Let the strategy variation δui be adapted to Ft and
satisfy E

∫ T

0 ‖δui‖2dt < ∞. Let δJi be the variation of Ji with
respect to δui. By (13) and (14)

dδxj

dt
= Aδxj +

Ḡ

N
δxi +

Ḡ

N

∑
k 
=i

δxk −R−1
2 δs

j 
= i, δxj(0) = 0

dδs = −
[
(A+ Ḡ)T δs+

1

N
PBδui

]
dt

+
1

N

N∑
i=1

N∑
j=1

δβj
i dWj , δs(T ) = 0 (19)

where Ḡ
Δ
= G−R−1

2 P . This implies δxj = δxk, for any j, k 
=
i. Thus
dδxj

dt
=

(
A+

N − 1

N
Ḡ

)
δxj +

Ḡ

N
δxi−R−1

2 δs, δxj(0)=0

which gives that

δxj(t)=

∫ t

0

e(A+N−1
N Ḡ)(t−τ)

(
Ḡ

N
δxi(τ)−R−1

2 δs(τ)

)
dτ.
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We further have

δx(N)(t) =
1

N
δxi(t) +

N − 1

N

∫ t

0

e(A+N−1
N Ḡ)(t−τ)

×
(
Ḡ

N
δxi(τ)−R−1

2 δs(τ)

)
dτ.

By this with (14), one can obtain

δJF
i (u, f̌) = E

∫ T

0

{[x̌i − Γx̌(N) − η]TQ[δxi − Γδx(N)]

− (P x̌(N) + s)TR−1
2 (Pδx(N) + δs)

+ ǔT
i R1δui}dt+ E[xT

i (T )Hδxi(T )]

and for j 
= i

δJF
j (u, f̌) = E

∫ T

0

[
(x̌j − Γx̌(N) − η)TQ(δxj − Γδx(N))

−(P x̌(N) + s)TR−1
2 (Pδx(N) + δs)

]
dt

+ E[xT
j (T )Hδxj(T )].

The above equation further implies that∑
j 
=i

δJF
j (u, f̌)

= E

∫ T

0

(
x̌
(N)
−i − N − 1

N
(Γx̌(N) + η)

)T

Q

[(
I−N − 1

N
Γ

)

·
∫ t

0

e(A+N−1
N Ḡ)(t−τ)(Ḡδxi −NR−1

2 δs)dτ − Γδxi

]

− (P x̌(N) + s)TR−1
2

[
P

(
(N − 1)2

N2

∫ t

0

e(A+
N−1
N Ḡ)(t−s)

·Ḡδxids+
N − 1

N
δxi

)
+(N − 1)δs

]
dt+ E

[
x
(N)
−i (T )T

·H
∫ T

0

e(A+N−1
N Ḡ)(T−t)(Ḡδxi −NR−1

2 δs)dt

]

where x̌
(N)
−i = 1

N

∑
j 
=i x̌j . Let δψi = Nδs. Then, from (19)

dδψi = − [
(A+ Ḡ)T δψi + PBδui

]
dt

+

N∑
i=1

N∑
j=1

δβj
i dWj , δψi(T ) = 0. (20)

Since all agents in (1) and (2) are in the symmetric setup
(statistically exchangeable when no controls applied), then for
large N , it is plausible to approximate x̌(N) by a deterministic
function x̄ (see [10], [22], [31]). The zero first-order variational
condition combined with the mean field approximation gives

E

∫ T

0

{
(x̌i − Γx̄− η)TQδxi −

[
((I − Γ)x̄− η)TQΓ

+ (P x̄+ s̄)TR−1
2 P

]
δxi +

[
((I − Γ)x̄− η)TQ(I − Γ)

− (P x̄+s̄)TR−1
2 P

]∫ t

0

e(A+Ḡ)(t−τ)(Ḡδxi−R−1
2 δψi)dτ

− (P x̄+ s̄)TR−1
2 δψi + ǔT

i R1δui + x̄T (T )He(A+Ḡ)(T−t)

×(Ḡδxi −R−1
2 δψi)

}
dt+ E[x̌T

i (T )Hδxi(T )] = 0 (21)

where x̄ ∈ C([0, T ],Rn) is an approximation of x̌(N). From
observation, (21) is the zero variation condition for the optimal

control problem with the cost function
J ′
i(ui)

=
1

2
E

∫ T

0

{
xT
i Qxi + 2[− ((I − Γ)x̄− η)T QΓ

− (Γx̄+ η)TQ− (P x̄+ s̄)TR−1
2 P ]xi

+ 2
[
((I − Γ)x̄− η)TQ(I − Γ)− (P x̄+ s̄)TR−1

2 P
]

×
∫ t

0

e(A+Ḡ)(t−τ)(Ḡxi −R−1
2 ψi)dτ

+ x̄T (T )He(A+Ḡ)(T−t)(Ḡxi −R−1
2 ψi) + uT

i R1ui

−2(P x̄+ s̄)TR−1
2 ψi

}
dt+

1

2
E[xT

i (T )Hxi(T )]

x =
1

2
E

∫ T

0

{
xT
i Qxi − 2

[
Ψx̄+ η̄ + (P x̄+ s̄)TR−1

2 P
]
xi

+ 2vT (Ḡxi −R−1
2 ψi)−2(P x̄+ s̄)TR−1

2 ψi

+uT
i R1ui

}
dt+

1

2
E[xT

i (T )Hxi(T )] (22)

where the second equality holds by an exchange of order of the
integration, and

v(t)
Δ
=

∫ T

t

e(A+Ḡ)T (τ−t)
[
(I − Γ)TQ((I − Γ)x̄− η)

−PR−1
2 (P x̄+ s̄)

]
dτ + e(A+Ḡ)T (T−t)Hx̄(T ).

2) Mean Field Approximation: Based on (13), (20), and
(22), we construct the following auxiliary optimal control prob-
lem.

(P3): minimize J̄F
i (ui) over ui ∈ UF

d,i, where

dx̀i = [Ax̀i +Bui +Gx̄−R−1
2 (P x̄+ s̄)]dt

+ σdWi, x̀i(0) = xi0 (23)

dψi = − [
(A+ Ḡ)Tψi + PBui

]
dt

+ ziidWi, ψi(T ) = 0. (24)

J̄F
i (ui) =

1

2
E

∫ T

0

[
x̀T
i Qx̀i − 2(P x̄+ s̄)TR−1

2 P x̀i

− 2(Ψx̄+ η̄)T x̀i + 2vT (Ḡx̀i −R−1
2 ψi)

−2(P x̄+ s̄)TR−1
2 ψi + uT

i R1ui

]
dt

+
1

2
E[x̀T

i (T )Hx̀i(T )]. (25)

Here s̄, v are determined by
˙̄s = −(A+G−R−1

2 P )T s̄− PBū− η̄, s̄(T ) = 0 (26)

v̇ = −(A+ Ḡ)T v − [
(I − Γ)TQ((I − Γ)x̄− η)

−PR−1
2 (P x̄+ s̄)

]
, v(T ) = Hx̄(T ) (27)

and x̄, ū ∈ C([0, T ],Rn) are to be determined by consistency
equations later.

Theorem 2.3: Assume that (A0), (A1), and (A2′) hold. Prob-
lem (P3) has a unique optimal control

ûi(t) = −R−1
1 BT [ki(t)− P (t)l(t)], 1 ≤ i ≤ N (28)

where (l, ki, ζi) is a unique adaptive solution to the following
(decoupled) FBSDE:

dl = [(A+ Ḡ)l +R−1
2 v +R−1

2 (P x̄+ s̄)]dt, l(0) = 0 (29)
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dki = − {
AT ki +Qx̀i − (Ψx̄+ η̄)− PR−1

2 (P x̄+ s̄)

+ḠT v
}
dt+ ζidWi, ki(T ) = Hx̀i(T ). (30)

Proof: Since Q ≥ 0 and R1 > 0, then from [15] and [25],
(P3) is uniformly convex in ui and there exists a unique optimal
control for (P3), denoted as ûi. Then

0 = δJ̄F
i (ûi)

= E

∫ T

0

[
(Qx̀i−Ψx̄−η̄)T δx̀i − (P x̄+ s̄)TR−1

2 Pδx̀i

+ vT (Ḡδx̀i −R−1
2 δψi)− (P x̄+ s̄)R−1

2 δψi

+uT
i R1δui

]
dt+ E[x̀T

i (T )Hδx̀i(T )] (31)

where δui = ui − ûi, δx̀i = x̀i − x̂i, and δψi = ψi − ψ̂i. Note
that (29) and (30) are decoupled. Given x̄, ū ∈ C([0, T ],Rn),
(29) is a standard linear BSDE and so has a unique solution
(ki, ζi). Note that

d(δx̀i) = (Aδx̀i +Bδui)dt

d(δψi) = − [
(A+ Ḡ)T δψi + PBδui

]
dt

+

N∑
i=1

N∑
j=1

δβj
i dWj , δψi(T ) = 0.

By Itô’s formula, we have

E[x̀T
i (T )Hδx̀i(T )]

= E[kTi (T )δx̀i(T )− kTi (0)δx̀i(0)]

= E

∫ T

0

{− [Qx̀i − (Ψx̄+ η̄)

−PR−1
2 (P x̄+ s̄) + ḠT v

]T
δx̀i + kTi Bδui}dt

and
E[lT (T )δψi(T )− lT (0)δψi(0)]

= E

∫ T

0

[
(R−1

2 v +R−1
2 (P x̄+ s̄))T δψi−lTPBδui

]
dt.

This and (31) gives

0 = E

∫ T

0

(R1ui +BT ki −BTPl)T δuidt

which implies ûi = R−1
1 BT (Pl − ki), 1 ≤ i ≤ N . �

Let ki = Kx̀i + ϕ. Then, by (23) and (30)

dki = K(Ax̀i −BR−1
1 BT (Kx̀i − Pl + ϕ) +Gx̄

−R−1
2 (P x̄+ s̄))dt+KσdWi + K̇x̀i + ϕ̇

= − {
AT (Kx̀i + ϕ) +Qx̀i − (Ψx̄+ η̄)

−PR−1
2 (P x̄+ s̄) + ḠT v

}
+ ζidWi

which implies

K̇ +ATK +KA−KBR−1
1 BTK +Q = 0

K(T ) = H (32)

ϕ̇+ (A−BR−1
1 BTK)Tϕ+KBR1B

TPl

+KḠx̄−KR−1
2 s̄− (Ψx̄+ η̄)

− PR−1
2 (P x̄+ s̄) + ḠT v = 0, ϕ(T ) = 0. (33)

Besides, applying (28) into (23), we obtain

dx̂(N) = [Ax̂(N) −BR−1
1 BT (Kx̂(N) − Pl + ϕ)

+ Ḡx̄−R−1
2 s̄]dt+

1

N

N∑
i=1

σdWi

where x̂(N)(0) = 1
N

∑N
i=1 xi0. As an approximation, one can

obtain

˙̄x = (Ā+Ḡ)x̄+BR−1
1 BT (Pl−ϕ)−R−1

2 s̄, x̄(0) = x̄0 (34)

where Ā
Δ
= A−BR−1

1 BTK. By (26), (27), (29), (33), and (34),
we construct the consistency equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̄x = (Ā+ Ḡ)x̄+BR−1
1 BT (Pl − ϕ)

−R−1
2 s̄, x̄(0) = x̄0

l̇ = (A+ Ḡ)l +R−1
2 v +R−1

2 (P x̄+ s̄), l(0) = 0

˙̄s = − (A+ Ḡ)T s̄+ PBR−1
1 BT (Kx̄− Pl + ϕ)

− η̄, s̄(T ) = 0

ϕ̇ = − ĀTϕ−KBR−1
1 BTPl −KḠx̄+KR−1

2 s̄

+Ψx̄+ η̄ + PR−1
2 (P x̄+ s̄)−ḠT v, ϕ(T ) = 0

v̇ = − (A+ Ḡ)T v + (Ψ−Q)x̄+ η̄

+ PR−1
2 (P x̄+ s̄), v(T ) = Hx̄(T ).

(35)

For further analysis, we assume the following.
(A3) (35) admits a unique solution in C([0, T ],R5n).
Note that (35) can be taken as an FBSDE without diffusion

terms. The condition of contraction mapping in [27, Th. 5.1]
holds necessarily. Thus, (35) must admit a unique solution in
a small time duration [T0, T ]. However, some additional condi-
tions are needed for existence of a (global) solution to (35) in
the time duration [0, T ]. We now give a sufficient condition that
ensures (A3).

Let

M11 =

[
Ā+ Ḡ BR−1

1 BTP

R−1
2 P A+ Ḡ

]

M12 =

[−R−1
2 −BR−1

1 BT 0

R−1
2 0 R−1

2

]

M21 =

⎡
⎣ PBR−1

1 BTK −PBR−1
1 BTP

−KḠ+Ψ+ PR−1
2 P 0

Ψ−Q+ PR−1
2 P 0

⎤
⎦

M22 =

⎡
⎣ −(A+ Ḡ) PBR−1

1 BTK 0
(K + P )R−1

2 −Ā −ḠT

PR−1
2 0 −(A+ Ḡ)

⎤
⎦ .

Then, (35) can be written as⎡
⎢⎢⎢⎣

˙̄x

l̇
ṡ
ϕ̇
v̇

⎤
⎥⎥⎥⎦ =

[
M11 M12

M21 M22

]⎡
⎢⎢⎢⎣
x̄
l
s
ϕ
v

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

0
0
−η̄
η̄
η̄

⎤
⎥⎥⎥⎦ . (36)

Proposition II.4: If the Riccati differential equation

Ẏ = M21 +M22Y − YM11 − YM12Y
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Y (T ) =

[
0 0 HT

0 0 0

]T
admits a unique solution Y ∈ R3n×2n in [0, T ], then (A3) holds.
Furthermore, under the assumption η̄ = 0, if the Riccati differ-
ential equation

Ż = M12 +M11Z − ZM22 − ZM21Z,Z(0) = 0 (37)

admits a solution Z ∈ R2n×3n in [0, T ], then (35) admits a
solution in [0, T ].

Proof: Denote m = [x̄T , lT ]T , and z = [sT , ϕT , vT ]T . Let

z = Y m+ α, α(T ) = 0. Then, Y (T ) = [
0 0 HT

0 0 0
]T. By (36)

ż = Ẏ m+ Y (M11m+M12z) + α̇

= (Ẏ + YM11 + YM12Y )x̄+ YM12α+ α̇

= M21x̄+M22(Y x̄+ α) + [−η̄T , η̄T , η̄T ]T .

Thus, we obtain

Ẏ = M21 +M22Y − YM11 − YM12Y (38)

α̇ = (M22 − YM12)α+ [−η̄T , η̄T , η̄T ]T (39)

where Y (T ) = [
0 0 HT

0 0 0
]T and α(T ) = 0. Since (38) admits

a unique solution, then (39) has a unique solution. Applying
z = Y m+ α into (36), we have

ṁ = M11m+M12(Y m+ α), m(0) = [x̄T
0 , 0]

T

which implies (35) admits a unique solution in [0, T ].

Denote Z = [
Z11 Z12 Z13

Z21 Z22 Z23
]. Note that s(T ) = ϕ(T ) = 0,

and v(T ) = Hx̄(T ). We have[
0 0
0 0
H 0

] [
Z11 Z12 Z13

Z21 Z22 Z23

]

=

[
0 0 0
0 0 0

HZ11(T ) HZ12(T ) HZ13(T )

]

= I3n.

By the modified Radon’s Lemma (see, e.g., [1, Th. 3.1.3]), the
proposition follows. �

C. Asymptotic Optimality

For Problem (PF), we may design the following decentralized
control:

ûi(t) = −R−1
1 BT [K(t)xi(t)− P (t)l(t) + ϕ(t)] (40)

where K,P are given by (32) and (10), respectively, and l and
ϕ are determined by (35). After the control (40) are applied in
(13) and (14), we obtain the following state equations:

dx̂i = [Āx̂i + Ḡx̂(N)+BR−1
1 BT (Pl − ϕ)−R−1

2 ŝ]dt

+ σdWi, i = 1, . . . , N. (41)

dŝ = −
[
(A+ Ḡ)T ŝ−PBR−1

1 BT (Kx̂(N)−Pl + ϕ) + η̄
]
dt

+
1

N

N∑
i=1

N∑
j=1

(βj
i −

σ

N
)dWj , ŝ(T ) = 0. (42)

For further analysis, we assume

(A4) The Riccati equation admits a solution

˙̃P + P̃ (Ā+ Ḡ) + (A+ Ḡ)T P̃ − P̃R−1
2 P̃

− PBR−1
1 BTK = 0, P̃ (T ) = 0.

Lemma 2.2: Assume that (A0)–(A1), (A2′), (A3)–(A4) hold.
For the system (1) and (2), we have

sup
0≤t≤T

E
(
‖x̂(N) − x̄‖2 + ‖ŝ− s̄‖2

)
= O(1/N).

Proof: It follows by (41) that

dx̂(N) = [(Ā+ Ḡ)x̂(N) +BR−1
1 BT (Pl − ϕ)

−R−1
2 ŝ]dt+

1

N

N∑
i=1

σdWi.

Denote ξ
Δ
= x̂(N) − x̄ and χ

Δ
= ŝ− s̄. From the above equation

with (35) and (42), we have

dξ = (Ā+ Ḡ)ξdt−R−1
2 χdt+

1

N

N∑
i=1

σdWi

ξ(0) =
1

N

N∑
i=1

xi0 − x̄0 (43)

dχ = − [
(A+ Ḡ)Tχ− PBR−1

1 BTKξ
]
dt

+
1

N

N∑
i=1

N∑
j=1

(βj
i −

σ

N
)dWj , χ(T ) = 0. (44)

Let χ(t) = P̃ (t)ξ(t) + ψ(t), t ≥ 0. By Itô formula

dχ = ˙̃Pξ + P̃

{
[(Ā+ Ḡ)ξ −R−1

2 (P̃ ξ + ψ)]dt

+
1

N

N∑
j=1

σdWj

⎫⎬
⎭+ ψ̇

= −
[
(A+ Ḡ)T (P̃ ξ + ψ) + PBR−1

1 BTKξ
]
dt

+
1

N

N∑
i=1

N∑
j=1

(
βj
i −

σ

N

)
dWj

which gives
∑N

i=1 β
j
i = (P̃ + I)σ, and

˙̃P + P̃ (Ā+ Ḡ) + (A+ Ḡ)T P̃ − P̃R−1
2 P̃

+ PBR−1
1 BTK = 0, P̃ (T ) = 0,

ψ̇ + (A+ Ḡ−R−1
2 P̃ )Tψ = 0, ψ(T ) = 0.

From (A4), we have P̃ is existent and ψ(t) ≡ 0. Thus

ξ(t) = eΥtξ(0) +
1

N

∫ t

0

eΥ(t−μ)
N∑
i=1

σdWi(μ)

where Υ = Ā+ Ḡ−R−1
2 P̃ . By (A0), one can obtain

E‖ξ(t)‖2 ≤ 2

N

∥∥eΥt
∥∥2

{
max
1≤i≤N

E‖xi0‖2+
∫ t

0

∥∥e−Υμσ
∥∥2

dμ

}
which completes the proof. �

Authorized licensed use limited to: CAS Academy of Mathematics & Systems Science. Downloaded on March 29,2021 at 04:29:38 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: SOCIAL OPTIMA IN ROBUST MEAN FIELD LQG CONTROL: FROM FINITE TO INFINITE HORIZON 1537

Lemma 2.3: If u = (u1, . . . , uN ) satisfies

sup
f∈UF

c

JF
soc(u) ≤ C

then there existsC1 independent ofN such that E
∫ T

0 ‖ui‖2dt ≤
C1 for all i = 1, . . . , N .

Proof: Let f = 0. Since R1 > 0, then supf J
F
soc(u) ≤ C im-

plies E
∫ T

0 ‖ui‖2dt ≤ C1 for all i = 1, . . . , N . �
Lemma 2.4: Assume that (A0), (A1), (A2′), (A3), and (A4)

hold. Then, there exists a constant C0 independent of N such
that

sup
f∈UF

c

N∑
i=1

JF
i (û, f) ≤ NC0.

Proof: Under (A0), (A1), and (A2′), f̌ = −R−1
2 (P x̌(N) +

s) is a maximizer of
∑N

i=1 J
F
i (û, f), i.e.,

∑N
i=1 J

F
i (û, f̌) =

supf
∑N

i=1 J
F
i (û, f). By Lemma 2.2, we obtain

sup
0≤t≤T

E‖x̂(N)‖2 sup
0≤t≤T

(
2E‖x̂(N) − x̄‖2 + 2‖x̄‖2

)
≤ C

sup
0≤t≤T

E‖s(t)‖2 ≤ sup
0≤t≤T

(
2E‖s̄‖2 + 2E‖s− s̄‖2) ≤ C.

Denote g
Δ
= Ḡx̂(N) +BR−1

1 BT (Pl − ϕ)−R−1
2 s. Note that

l, ϕ ∈ C([0, T ],Rn). Then, we have sup0≤t≤T E‖g(t)‖2 ≤ C.
It follows from (41) that

E‖x̂i‖2 ≤ C + 3C
∥∥∥E

∫ T

0

eĀ(T−τ)dτ
∥∥∥2

+ 3E

∫ T

0

∥∥∥eĀ(T−τ)σ
∥∥∥2

dτ.

From this with (40), we have
N∑
i=1

sup
f∈UF

c

JF
i (û, f) =

1

2

N∑
i=1

E

∫ T

0

{∥∥x̂i − Γx̂(N) − η
∥∥2

Q

+‖ûi‖2R1
− ‖f̌‖2R2

}
dt ≤ NC0.

�
Let k̂i

Δ
= Kx̂i + ϕ, where ϕ is given by (35). We have the

following approximation result.
Lemma 2.5: Assume that (A0), (A1), (A2′), (A3), and (A4)

hold. Then, for problem (PF), we have

sup
0≤t≤T

E‖k̂(N) − v‖2 = O(1/N)

where k̂(N) = 1
N

∑N
i=1 k̂i and v is given by (35).

Proof: Let ϑ = v −Kx̄− ϕ. By (35) and some elementary
calculations, we obtain

dϑ(t) = −ATϑ(t)dt, ϑ(T ) = 0

which implies ϑ(t) ≡ 0. This further gives v = Kx̄+ ϕ. By
Lemma 2.2, we have

sup
0≤t≤T

E‖k̂(N) − v‖2 = sup
0≤t≤T

E‖K(x̂(N) − x̄)‖2

≤ C sup
0≤t≤T

E‖x̂(N) − x̄‖2 = O(1/N).

This completes the proof. �
We are in a position to state the result of asymptotic optimality

of the decentralized control.

Theorem 2.4: Let (A0), (A1), (A2′), (A3), and (A4) hold.
Assume that (P2) is convex. For Problem (PFa), the set of control
laws û = (û1, . . . , ûN ) given by (40) has asymptotic robust
social optimality, i.e.,∣∣∣∣ 1N Jwo

soc(û)−
1

N
inf

u∈UF
c

Jwo
soc(u)

∣∣∣∣ = O(
1√
N

).

Proof: See Appendix A. �

III. ROBUST MEAN FIELD SOCIAL CONTROL OVER AN

INFINITE HORIZON

In this section, we consider social optimum control in robust
mean field model over an infinite horizon. Let

Ud,i =

{
ui | ui(t) ∈ σ(xi(s), 0 ≤ s ≤ t)

E

∫ ∞

0

e−ρt‖xi(t)‖2dt < ∞
}

and

Ji(u, f) =
1

2
E

∫ ∞

0

e−ρt
{∥∥xi(t)− Γx(N)(t)− η

∥∥2

Q

+‖ui(t)‖2R1
− ‖f(t)‖2R2

}
dt (45)

where ρ ≥ 0.
Problem (PIa): Seek a set of decentralized control to

asymptotically optimize the social cost under the worst-case
disturbance for System (1) and (45), where Jsoc(u, f) =∑N

i=1 Ji(u, f), and

Uc =

{
ui| ui(t) ∈ σ(xi(0),Wi(s), 0 ≤ s ≤ t, 1 ≤ i ≤ N)

E

∫ ∞

0

e−ρt‖xi(t)‖2dt < ∞
}
.

A. Decentralized Control Design

Let ui = ǔi ∈ Uc, i = 1, . . . , N be fixed. The optimal control
problem with respect to drift uncertainty is as follows:

(P4) minimizef∈Uc
J̌soc(ǔ, f)

where

J̌soc(ǔ, f) =
1

2

N∑
i=1

E

∫ ∞

0

e−ρt
{
−∥∥xi(t)− Γx(N)(t)

−η
∥∥2

Q
+ ‖f(t)‖2R2

}
dt. (46)

1) An Example of a Scalar Model: Consider the case
of uniform agents with scalar states. Let A = a, η = 0, G =
0, Q = 1,Γ = γ, R2 = r2, xi ∈ R and ǔi = 0, i = 1, . . . , N .
By rearranging the integrand of J̌soc, we have

J̌soc =
1

2
E

∫ ∞

0

e−ρt
(
−xT Q̂x+Nr2f

2
)
dt

where x = (x1, . . . , xN )T , and Q̂ = (q̂ij) is given by

q̂ii = 1 + (γ2 − 2γ)/N, q̂ij = (γ2 − 2γ)/N, i 
= j.

Introduce the Riccati equation

2
(
a− ρ

2

)
P − 1

Nr2
P11TP − Q̂ = 0. (47)
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By observation, P has the form

pij =

{
p if i = j
q if i 
= j.

Denote ā = a− ρ
2 . By solving (47), we obtain the maximal

solution as follows: p = q + 1
2ā and

q =
1

N

(
r2ā− 1

2ā
+

√
r22ā

2 + r2(γ2 − 2γ − 1)

)
.

The optimal control is given by

f̌ =
1

Nr2
1TPx =

[
ā+

√
ā2+

1

r2
(γ2−2γ− 1)

]
x(N).

�
For general systems, we make the following assumptions.
(A5) Problem (P4) is uniformly convex in f ;
(A6) A+G− ρ

2I is Hurwitz.
Below are some equivalent conditions to (A5).
Proposition 3.1: Let (A0) and (A6) hold. Then, (A5) holds,

i.e., (P4) is uniformly convex, if and only if one of (i)–(iv) holds.
i) For any f ∈ Uc, there exists δ > 0 such that

J ′
soc(f) =

1

2
E

∫ ∞

0

e−ρt
(
−yT Q̂y +NfTR2f

)
dt

≥ δNE

∫ ∞

0

e−ρt‖f‖2dt
where y ∈ RnN satisfies

dy = (Ǎy + 1⊗ f)dt, y(0) = 0.

ii) The equation

ρP = ǍTP+PǍ− Q̂−P(1⊗ I)(NR2)
−1(1T ⊗ I)P

admits a solution such that Ǎ− (1⊗ I)(NR2)
−1(1T ⊗ I)P−

ρ
2 (IN ⊗ I) is Hurwitz.

iii) The equation

ρP = (A+G)TP + P (A+G)− PR−1
2 P +Ψ−Q

admits a solution such that A+ Ḡ− ρ
2I is Hurwitz.

iv) The real part of any eigenvalue of M is not zero, where

M =

[
A+G− ρ

2I R−1
2

−(I − Γ)TQ(I − Γ) −AT −GT + ρ
2I

]
.

Proof: (A5)⇔(i) follows by [25, Lemma 1]. We now prove
(ii)⇒(A5). If (ii) holds, then by the completion of squares
technique, we can obtain

J ′
soc(f)

= E

∫ ∞

0

e−ρtN
∥∥∥f(t) + 1

N
R−1

2 (1T ⊗ I)Py(t)
∥∥∥2

R2

dt ≥ 0.

Clearly, J ′
soc(f) = 0 leads to f(t) = − 1

NR−1
2 (1T ⊗ I)Py(t),

which together with y(0) = 0 further implies f(t) ≡ 0. From
[15], we obtain that J ′

soc(f) is positive definite, which im-
plies that (P4) is uniformly convex. Note that (Ǎ− ρ

2 (IN ⊗
I)), IN ⊗ I) is stabilizable. From (5) and (A5)⇔(i), (P4) is
uniformly convex if and only if there exists δ > 0 such that∫ ∞

0

e−ρt
(−‖(I − Γ)yi‖2Q + fTR2f

)
dt ≥

∫ ∞

0

e−ρtδ‖f‖2dt.
Following the proof of (ii)⇒(A5), we obtain (iii)⇒(A5). Since
(A6) holds, it follows by [34, Th. 5.3] that (A5)⇒(iii). Note
that (1T ⊗ I)Ǎ = 1T ⊗ (A+G), Ǎ(1⊗ I) = 1⊗ (A+G),
and 1

N (1T ⊗ I)Q̂(1T ⊗ I) = Q−Ψ. We have 1
N (1T ⊗

I)P(1T ⊗ I) = P. From (4) and y1 = y2 = · · · = y(N), we
obtain (iii)⇔(ii). (iii)⇔(iv) is implied from [28]. �

Remark 3.1: From the proof of Proposition 3.1, Assumption
(A5) implies J ′

soc(f) ≥ 0, i.e., (P4) is convex in f .
With some abuse of notation, in this section, we still use

P,K, Y, Z, s, s̄, ϕ, v . . .. But here P,K, Y, Z are time-invariant
and s, s̄, ϕ, v are functions of time t ∈ [0,∞). Following (10)–
(12), we may construct f̌ = −R−1

2 (Px(N) + š), where P ∈
Rn×n and š ∈ L2

F, ρ2
(0,∞;Rn) are determined by(

A+G− ρ

2
I
)T

P + P
(
A+G− ρ

2
I
)

− PR−1
2 P − (I − Γ)TQ(I − Γ) = 0, (48)

dš+ [(A+G−R−1
2 P − ρI)T š+ PBǔ(N) + η̄]dt

+
1

N

N∑
i=1

ζidWi = 0. (49)

Theorem 3.1: Under (A0), (A1), and (A5), Problem (P4)
has a minimizer f̌ = −R−1

2 (Px(N) + š), where P is the max-
imal solution of (48) and š is the unique solution of (49) in
L2
F, ρ2

(0,∞;Rn).

Proof: Denote x́i = e−
ρ
2 txi, úi = e−

ρ
2 tui, and f́ = e−

ρ
2 tf . It

follows by (1) and (46) that

dx́i(t) =
[(

A− ρ

2
I
)
x́i(t)+Búi(t) +Gx́(N)(t)+f́(t)

]
dt

+ e−
ρ
2 tσdWi(t), 1 ≤ i ≤ N

J̌soc(ǔ, f) =
1

2

N∑
i=1

E

∫ ∞

0

{
−∥∥x́i(t)− Γx́(N)(t)

−e−
ρ
2 tη

∥∥2

Q
+ ‖f́(t)‖2R2

}
dt.

By a similar argument in the proof of Theorem 2.1, we obtain
J̌soc(ǔ, f) = εΛ′

1 +
ε2

2 Λ
′
2, where

Λ′
1

Δ
=

N∑
i=1

E

∫ ∞

0

[〈−Q
(
x́i − (Γx́(N) + η)

)
, ýi

−Γý(N)
〉
+ 〈R2f́ , f́〉

]
dt

Λ′
2

Δ
=

N∑
i=1

E

∫ ∞

0

{
−∥∥ýi − Γý(N)

∥∥2

Q
+ ‖f́‖2R2

}
dt

and ýi satisfies

dýi =
[(

A− ρ

2

)
ýi +Gý(N) + f́

]
dt, ýi(0) = 0.

By (A5), Λ′
2 ≥ 0. Problem (P4) has a unique minimizer f́ =

−R−1
2 ṕ(N) with ṕ(N) = 1

N

∑N
i=1 ṕi if and only if⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx́i =
[(

A− ρ

2
I
)
x́i +Búi −R−1

2 ṕ(N) +Gx́(N)
]
dt

+ e−ρtσdWi, xi(0) = xi0

dṕi = −
[(

A− ρ

2
I
)T

ṕi +GT ṕ(N) −Qx́i +Ψx́(N)

+e−ρtη̄
]
dt+

∑N

j=1
β́j
i dWj

(50)
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admits a set of solutions (x́i, ṕi, i = 1, . . . , N) in L2
F, ρ2

(0,∞;Rn). It follows from (50) that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dx́(N) =
[(
A+G− ρ

2I
)
x́(N) +Bú(N)

−R−1
2 ṕ(N)

]
dt+ e−ρtσdWi, xi(0) = xi0

dṕ(N) = −
[(
A+G− ρ

2I
)T

ṕ(N) + (Ψ−Q)x́(N)

+e−ρtη̄] dt+
∑N

j=1 β́
j
i dWj .

(51)

Note that A+G− ρ
2I is Hurwitz. By (A5) and Proposition 3.1,

we obtain that (48) admits a maximal solution such thatA+G−
ρ
2I −R−1

2 P is Hurwitz, which with [34, Lemma 2.5] gives that
(49) admits a unique solution in L2

F, ρ2
(0,∞;Rn). Let ṕ(N) =

P x́(N) + ś, where ś = e−
ρ
2 tš. Then, we have that (x́(N), ṕ(N))

is a solution of (51). By a similar argument to Theorem 2.2, the
proof is completed. �

After the worst-case drift f̌ is applied, we have the following
optimal control problem.

(P2′): Minimize Jsoc(u, f̌(u)) over {ui, 1 ≤ i ≤ N)|ui ∈
Uc}, where s ∈ L2

F, ρ2
(0,∞;Rn)

dxi = [Axi+Bui +Gx(N)−R−1
2 (Px(N) + s)]dt

+ σdWi, xi(0) = xi0, 1 ≤ i ≤ N (52)

ds = −
[
(A+ Ḡ)T s+ PBu(N) + η̄

]
dt

+
1

N

N∑
i=1

N∑
j=1

(
βj
i −

σ

N

)
dWj (53)

Jsoc(u) =
1

2

N∑
i=1

E

∫ ∞

0

e−ρt
{∥∥xi − Γx(N) − η

∥∥2

Q

+‖ui‖2R1
− ‖Px(N) + s‖2

R−1
2

}
dt. (54)

Lemma 3.1: Assume that (A0), (A5), and (A6) hold, and
there exists a constant C ′

0 > 0 such that R1 > C ′
0I and R2 >

C ′
0I . Then, Problem (P2′) is uniformly convex.
Proof: Let z ∈ RnN and s̀ ∈ Rn satisfy

dz = (Āz+Bu− 1⊗R−1
2 s̀)dt, z(0) = 0 (55)

ds̀ = −
[
(A+ Ḡ)T s̀+

1

N
PB(1T ⊗ I)u

]
dt

+
1

N

N∑
i=1

N∑
j=1

β̀j
i dWj . (56)

By a similar argument with [25], we obtain that Problem (P2)
is uniformly convex if for any ui ∈ Uc, there exists δ > 0 such
that

E

∫ ∞

0

e−ρt
(
zT Q̄z+ uTR1u−Ns̀TR−1

2 s̀
)
dt

≥ δE

∫ ∞

0

e−ρt‖u‖2dt. (57)

Note that A+ Ḡ− ρ
2I is Hurwitz. By [34, Lemma 2.5] and (56)

E

∫ ∞

0

e−ρt‖ś(t)‖2dt ≤ C1

N
E

∫ ∞

0

e−ρt‖u(t)‖2dt. (58)

Since Ā− ρ
2I is Hurwitz, from (55) and (58), we obtain

E

∫ ∞

0

e−ρt‖z‖2dt ≤ C

∫ ∞

0

e−ρtE‖u‖2dt.

Note that λmin(Q̄) ≥ −λmax(Ψ + PR−1
2 P ). Thus, there exists

C ′
0 > 0 such that for R1 ≥ C ′

0I and R2 ≥ C ′
0I , (57) holds. �

Based on the analysis in Section II-B, we construct an auxil-
iary optimal control problem.

(P5): Minimize J̄i(ui) over ui ∈ Ui, where

dx̀i= [Ax̀i+Bui+Gx̄−R−1
2 (P x̄+s̄)]dt+ σdWi

x̀i(0) = xi0

dψi = − [
(A+ Ḡ)Tψi + PBui

]
dt+ ziidWi

J̄i(ui) =
1

2
E

∫ ∞

0

e−ρt
[
x̀T
i Qx̀i − 2(Ψx̄+ η̄)T x̀i

− 2(P x̄+ s̄)TR−1
2 P x̀i + 2vT (Ḡx̀i −R−1

2 ψi)

−2(P x̄+ s̄)TR−1
2 ψi + uT

i R1ui

]
dt.

Here s̄, v ∈ Cρ/2([0,∞),Rn) are determined by

˙̄s = − (A+ Ḡ− ρI)T s̄− PBū− η̄

v̇ = − (A+ Ḡ− ρI)T v + (Ψ−Q)x̄+ η̄ + PR−1
2 (P x̄+ s).

By using the method in [38] and [44], we can show that if (A6)
holds and Q ≥ 0, (P5) admits the unique optimal control

ûi(t) = −R−1
1 BT (Kxi(t)− Pl(t) + ϕ(t)) (59)

where K ∈ Rn×n and l, ϕ ∈ Cρ/2([0,∞),Rn) are determined
by

ρK = ATK +KA−KBR−1
1 BTK +Q

l̇ = (A+ Ḡ)l +R−1
2 v +R−1

2 (P x̄+ s̄), l(0) = 0

ρϕ = ϕ̇+ ĀTϕ+KBR−1
1 BTPl +KḠx̄

−KR−1
2 s̄− (Ψx̄+ η̄)−PR−1

2 (P x̄+ s̄) + ḠT v.

By applying the control (59) into (52) combined with mean field
approximations, we obtain the following equation system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̄x = (Ā+Ḡ)x̄+BR−1
1 BT(Pl−ϕ)−R−1

2 s̄, x̄(0) = x̄0

l̇ = (A+ Ḡ)l +R−1
2 v +R−1

2 (P x̄+ s̄), l(0) = 0

˙̄s = −(A+ Ḡ−ρI)T s̄+ PBR−1
1 BT (Kx̄+ ϕ)−η̄

ϕ̇= − (Ā−ρI)Tϕ−KBR−1
1 BTPl −KḠx̄

+KR−1
2 s̄+Ψx̄+ η̄ + PR−1

2 (P x̄+ s̄)−ḠT v

v̇ = − (A+ Ḡ− ρI)T v + (Ψ−Q)x̄+ η̄

+PR−1
2 (P x̄+ s̄).

(60)

For further analysis, we assume.
(A7) (60) admits a unique solution (x̄, l, s, ϕ, v) in

Cρ/2([0,∞),R5n).
The existence and uniqueness of a solution to (60) may be

obtained by using fixed-point methods similar to those in [18]
and [38]. We now give a sufficient condition that ensures (A7) by
virtue of Riccati equations. Using the notation in Section II-B,
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we have⎡
⎢⎢⎢⎣

˙̄x

l̇
ṡ
ϕ̇
v̇

⎤
⎥⎥⎥⎦ =

[
M11 M12

M21 M22 + ρI3n

]⎡
⎢⎢⎢⎣
x̄
l
s
ϕ
v

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

0
0
−η̄
η̄
η̄

⎤
⎥⎥⎥⎦. (61)

Proposition 3.2: If the algebraic Riccati equation
M21 + ρY +M22Y − YM11 − YM12Y = 0

admits a solution Y ∈ R3n×2n such that both M11 +M12Y −
ρ
2I2n and−M22 + YM12 − ρ

2I3n are Hurwitz, then (A7) holds.
Proof: Denote m = [x̄T , lT ]T , z = [sT , ϕT , vT ]T . Let z =

Y m+ α. By (61) and Itô’s formula, we obtain
0 = M21 + (M22 + ρI3n)Y − YM11 − YM12Y (62)

α̇ = (M22 + ρI3n − YM12)α+ [−η̄T , η̄T , η̄T ]T . (63)
Since (62) admits a solution such that −M22 + YM12 − ρ

2I3n
is Hurwitz, then (63) has a unique solution

α(t) = −
∫ ∞

t

exp [(YM12 −M22 − ρI3n) (τ − t)]

· [−η̄T , η̄T , η̄T ]T dτ.

Applying z = Y m+ α into (61), we have
ṁ = (M11 +M12Y )m+M12α.

Since M11 +M12Y − ρ
2I2n is Hurwitz, then [x̄T , lT ]T ∈

Cρ/2([0,∞),R2n), and this further implies that (60) admits a
unique solution in Cρ/2([0,∞),R5n). �

B. Asymptotic Optimality

Let
ûi(t) = −R−1

1 BT (Kxi(t)− Pl(t) + ϕ(t)) (64)
where l and ϕ are determined by (60). After the control ûi is
applied, the closed-loop dynamics can be written as

dx̂i = [Āx̂i + Ḡx̂(N) +BR−1
1 BT (Pl − ϕ)

−R−1
2 ŝ]dt+ σdWi.

For further analysis, we assume
(A8) The equation

P̃ (Ā+ Ḡ) + (A+ Ḡ)T P̃ − P̃R−1
2 P̃ + PBR−1

1 BTK = 0
(65)

admits a solution P̃ such that Ā+ Ḡ− ρ
2I −R−1

2 P̃ and A+

Ḡ− ρ
2I −R−1

2 P̃ are Hurwitz, where Ā = A−BR−1
1 BTK

and Ḡ = G−R−1
2 P .

Theorem 3.2: Assume (i) (A0), (A1), (A5)–(A8) hold, (ii)
A− ρ

2I is Hurwitz , and (iii) (P2′) is convex. For Problem
(PIa), the set of control laws û = (û1, . . . , ûN ) given by (40)
has asymptotic robust social optimality, i.e.,∣∣∣∣∣ 1N sup

f∈Uc

Jsoc(û, f)− 1

N
inf

ui∈Uc

sup
f∈Uc

Jsoc(u, f)

∣∣∣∣∣ = O

(
1√
N

)
.

Proof: See Appendix B. �

IV. NUMERICAL EXAMPLE

We now give a numerical example for Problem (PF) to ver-
ify the result. Take the parameters A = B = R1 = R2 = Q =
H = 1,G = −1.5,Γ = 0.5, η = 0, and T = 1. By solving (10),
we can obtain thatP (t) = − 1

(t+1) − 1
2 , which is shown in Fig. 1.

By Proposition 2.2, (A2′) holds. For (37) in Proposition 2.4, the

Fig. 1. The curve of P (t).

Fig. 2. The curves of all entries of Z ∈ R2×3 when t ∈ [0, 0.7].

Fig. 3. The curve of P̃ (t).

curves of all entries of the solution Z are given in Fig. 2. It
can be seen that when t ∈ [0, 0.7], (37) admits a solution. By
MATLAB computation, the solution blows up at t = 0.758276.
From Proposition 2.4, when t ∈ [0, 0.7], (A3) holds. The curve
of P̃ is shown in Fig. 3. It can be seen that the Riccati equation
in (A4) admits a solution P̃ when t ∈ [0, 0.8]. As a conclusion,
when t ∈ [0, 0.7], (A0), (A1), (A2′), (A3), and (A4) hold. By
Theorem 2.4, Problem (PF) admits a set of control laws, which
has asymptotic robust social optimality.

V. CONCLUDING REMARKS

This article considered a class of mean field LQG social
optimum problem with global drift uncertainty. Based on the soft
control approach, a set of decentralized strategies is designed
by optimizing the worst-case cost subject to consistent require-
ments in mean field approximations. Such set of strategies is
further shown to be robust social optimal.
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For further work, it is of interest to consider mean field team
optimization with volatility-uncertain common noise. Due to
common noise and volatility uncertainty, all agents are coupled
via some high-dimensional FBSDE systems. Other interesting
topics include robust mean-field type social control [8], [30],
mean field social control with partial information [39], [43], and
with discrete sampling [26], [32].

APPENDIX A
PROOF OF THEOREM 2.4

Proof: Note that we only need to optimize the social cost under
worst-case disturbance Jwo

soc(u). By Theorem 2.2, Problem (P2)
is equivalent to (PF). From Lemma 2.4, one can obtain that for
(P2)

E

∫ T

0

(‖x̂i‖2 + ‖ûi‖2)dt < C. (A.1)

It suffices to consider allui ∈ UF
c such thatJwo

soc(u) ≤ Jwo
soc(û) ≤

NC0. By Lemma 2.3

E

∫ T

0

‖ui‖2dt < C, i = 1, . . . , N (A.2)

which implies

E

∫ T

0

‖u(N)‖2dt < C. (A.3)

By (14) and [44, Ch. 7], we have

E

∫ T

0

‖s‖2dt ≤ C1E

∫ T

0

‖u(N)‖2dt < C.

From (13)

dx(N)=
[
(A+Ḡ)x(N)+Bu(N)−R−1

2 s
]
dt+

1

N

N∑
i=1

σdWi

which together with (A.3) implies E
∫ T

0 ‖x(N)‖2dt< C. This
with (A.2) leads to

E

∫ T

0

(‖xi‖2 + ‖ui‖2 + ‖s‖2)dt < C. (A.4)

Let x̃i = xi − x̂i, ũi = ui − ûi, i = 1, . . . , N , x̃(N) =
1
N

∑N
j=1 x̃j and s̃ = s− ŝ. Then, by (13)

dx̃i = (Ax̃i + Ḡx̃(N) +Bũi −R−1
2 s̃)dt, x̃i(0) = 0. (A.5)

ds̃ = −
[
(A+ Ḡ)T s̃+ PBũ(N)

]
dt

+
1

N

N∑
i=1

N∑
j=1

β̃j
i dWj , s̃(T ) = 0. (A.6)

By (A.1) and (A.4)

E

∫ T

0

(‖x̃i‖2 + ‖ũi‖2 + ‖s̃‖2)dt < C.

From (15), we have

JF
soc(u) =

1

2

N∑
i=1

E

∫ T

0

[∥∥x̂i − Γx̂(N) − η + x̃i

− Γx̃(N)
∥∥2

Q
+

∥∥ûi + ũi

∥∥2

R1

−∥∥P (x̂(N) + x̃(N)) + ŝ+ s̃
∥∥2

R−1
2

]
dt

+
1

2
E
∥∥x̂i(T ) + x̃i(T )

∥∥2

H

=
N∑
i=1

(JF
i (û) + J̃F

i (ũ) + Ii) (A.7)

where

J̃F
i (ũ)

Δ
=

1

2
E

∫ T

0

[
‖x̃i − Γx̃(N)‖2Q + ‖ũi‖2R1

−‖P x̃(N)‖2
R−1

2

]
dt+

1

2
E
∥∥x̃i(T )

∥∥2

H

Ii = E

∫ T

0

[(
x̂i − Γx̂(N) − η

)T

Q
(
x̃i − Γx̃(N)

)

+ ûT
i R1ũi −

(
P (x̂(N) + ŝ)

)T

R−1
2

×(P x̃(N) + s̃)
]
dt+ E[x̂T

i (T )Hx̃i(T )].

By Lemma 2.1, Problem (P2) is uniformly convex. As shown
in [15] and [25], for any λ1 ∈ (0, 1) and λ2 = 1− λ1, we
have

λ1λ2

N∑
i=1

J̃F
i (ũ)

= λ1J
F
soc(u) + λ2J

F
soc(û)− JF

soc(λ1u+ λ2û) ≥ 0

which implies
∑N

i=1 J̃
F
i (ũ) ≥ 0. We now prove 1

N

∑N
i=1 Ii =

O( 1√
N
). By straightforward computation

N∑
i=1

Ii =
N∑
i=1

E

∫ T

0

{
x̃T
i

[
Q(x̂i − Γx̂(N) − η)

−ΓTQ((I − Γ)x̂(N) − η)
]
+ ûT

i R1ũi

}
dt

−NE

∫ T

0

(
P x̂(N) + ŝ

)T

R−1
2 (P x̃(N) + s̃)dt

+
N∑
i=1

E[x̂T
i (T )Hx̃i(T )]

=

N∑
i=1

E

∫ T

0

{
x̃T
i (Qx̂i −Ψx̄− η) + ûT

i R1ũi

− (P x̄+ ŝ)T R−1
2 P x̃i

}
dt

+

N∑
i=1

E

∫ T

0

ξT
[
(Ψ−PR−1

2 P )x̃i−PR−1
2 s̃

]
dt

−NE

∫ T

0

(P x̄+ ŝ)TR−1
2 s̃dt+

N∑
i=1

E‖x̂T
i (T )‖2H (A.8)

where ξ = x̂(N) − x̄. By (35) and (41)

dk̂i =
{
−AT k̂i −Qx̂i + (Ψx̄+ η̄) + PR−1

2 (P x̄+ s̄)

−ḠT v+KG(x̂(N) − x̄)−KR−1
2 (ŝ− s̄)

}
dt

+KσdWi, k̂i(T ) = Hx̂i(T ).
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By (A.5) and Itô’s formula
N∑
i=1

E[x̂T
i (T )Hx̃i(T )]

=
N∑
i=1

E

∫ T

0

{− [
Qx̂i − (Ψx̄+ η̄)− PR−1

2 (P x̄+ s̄)

+ḠT v −KG(x̂(N) − x̄) +KR−1
2 (ŝ− s̄)

]T
x̃i

+k̂Ti (Ḡx̃(N) +Bũi −R−1
2 s̃)

}
dt

and

0 =

N∑
i=1

E[lT (T )s̃(T )− lT (0)s̃(0)]

= NE

∫ T

0

[R−1
2 v +R−1

2 (P x̄+ s̄)]T s̃dt

−NE

∫ T

0

(lTPBũ(N))dt.

The above two equations lead to
N∑
i=1

E[x̂T
i (T )Hx̃i(T )]

=
N∑
i=1

E

∫ T

0

{− [
Qx̂i − (Ψx̄+ η̄)− PR−1

2 (P x̄+ s̄)

−KG(x̂(N) − x̄) +KR−1
2 (ŝ− s̄)

]T
x̃i

− ûT
i R1ũi + (k̂(N) − v)T Ḡx̃i

−(k̂(N) − v)R−1
2 s̃+ (P x̄+ s̄)TR−1

2 s̃
}
dt.

From this and (A.8)
N∑
i=1

Ii =

N∑
i=1

E

∫ T

0

[
ξT (Ψ− PR−1

2 P +KG)x̃i

+ (k̂(N) − v)T (Ḡx̃i −R−1
2 s̃)

+((P +K)x̃i + s̃)R−1
2 (s̄− ŝ)

]
dt.

By Lemmas 2.2, 2.5, and Schwarz inequality, we obtain

1

N

N∑
i=1

Ii = O

(
1√
N

)
.

From this with (A.7), the theorem follows. �

APPENDIX B
PROOF OF THEOREM 3.2

To prove Theorem 3.2, we need three lemmas.
Lemma 4.1: Assume that (A0), (A1), (A5)–(A8) hold. For

Problem (PI), we have

E

∫ ∞

0

e−ρt
(
‖x̂(N) − x̄‖2 + ‖ŝ− s̄‖2

)
dt = O

(
1

N

)
.

(B.1)

Proof. By a similar argument to (43)–(44), we obtain

dξ = (Ā+ Ḡ)ξdt−R−1
2 χdt+

1

N

N∑
i=1

σdWi

ξ(0) =
1

N

N∑
i=1

xi0 − x̄0

dχ = − [
(A+ Ḡ)Tχ+ PBR−1

1 BTKξ
]
dt

+
1

N

N∑
i=1

N∑
j=1

(
βj
i −

σ

N

)
dWj

where ξ=x̂(N) − x̄ and χ=ŝ− s̄. By Itô’s formula and (A8),
we have χ = P̃ ξ + ψ, where P̃ is given by (65). Denote Υ =
Ā+ Ḡ−R−1

2 P̃ . Then

ξ(t) = eΥtξ(0) +
1

N

∫ t

0

eΥ(t−μ)
N∑
i=1

σdWi(μ).

This with (A8) gives E
∫ ∞
0 e−ρt‖ξ(t)‖2dt = O(1/N). �

Lemma 4.2: Assume that (A0), (A1), (A5)–(A8) hold. For
Problem (PI) and any N

max
1≤i≤N

E

∫ ∞

0

e−ρt
(‖x̂i‖2 + ‖ûi‖2

)
dt < ∞. (B.2)

Proof: By (A7) and Lemma 6.1, we obtain that

E

∫ ∞

0

e−ρt(‖x̂(N)(t)‖2 + ‖ŝ(t)‖2)dt < ∞.

Note that Ā− ρ
2I is Hurwitz. By Schwarz’s inequality

E

∫ ∞

0

e−ρt‖x̂i(t)‖2dt

≤ C+3E

∫ ∞

0

e−ρμ‖g(μ)‖2
∫ ∞

μ

t
∥∥e(Ā− ρ

2 I)(t−μ)
∥∥2

dtdμ

+ 3CE

∫ ∞

0

e−ρμ‖σ(μ)‖2
∫ ∞

μ

∥∥e(Ā− ρ
2 I)(t−μ)σ

∥∥2
dtdμ

≤ C + 3CE

∫ ∞

0

e−ρμ‖g(μ)‖2dμ

+ 3CE

∫ ∞

0

e−ρμ‖σ(μ)‖2dμ ≤ C1.

This with (A7) completes the proof. �
Lemma 6.3: Assume A− ρ

2I is Hurwitz. Then

E

∫ ∞

0

e−ρt‖k̂(N) − v‖2dt ≤ O(1/N).

Proof: By (60) and some elementary computations, we
obtain dϑ(t) = −(A− ρ

2I)
Tϑ(t)dt, where ϑ = v −Kx̄− ϕ.

This leads to ϑ(t) = e−(A− ρ
2 I)tϑ(0). Since A− ρ

2I is Hurwitz,
and ϑ ∈ Cρ/2([0,∞),Rn), then we have ϑ(t) ≡ 0, which im-

plies v = Kx̄+ ϕ. By Lemma 6.1,
∫ ∞
0 e−ρtE‖k̂(N) − v‖2dt ≤

O(1/N). This completes the proof. �
Proof of Theorem 3.2: As in the proof of Theorem 2.4, we

restrict to Problem (P2′). It suffices to consider all ui ∈ Uc such
that supf∈Uc

Jsoc(u, f) ≤ supf∈Uc
Jsoc(û, f) ≤ NC0. Taking
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f = 0, we have

E

∫ ∞

0

e−ρt‖ui‖2dt < C. (B.3)

By (53) and [34], we have

E

∫ ∞

0

e−ρt‖s‖2dt ≤ C1E

∫ ∞

0

e−ρt‖u(N)‖2dt < C.

Noticing A+ Ḡ− ρ
2I is Hurwitz, one can obtain

E
∫ ∞
0 e−ρt‖x(N)‖2dt < C which with (B.3) implies

E

∫ ∞

0

e−ρt
(‖xi‖2 + ‖ui‖2 + ‖s‖2) dt ≤ C. (B.4)

From this and (B.2)

E

∫ ∞

0

(‖x̃i‖2 + ‖ũi‖2 + ‖s̃‖2)dt < C. (B.5)

We have Jsoc(u) =
∑N

i=1(Ji(û) + J̃i(ũ) + Ii), where

J̃i(ũ)
Δ
=

1

2
E

∫ ∞

0

e−ρt
[
‖x̃i − Γx̃(N)‖2Q

+‖ũi‖2R1
− ‖P x̃(N)‖2R2

]
dt

Ii Δ
= E

∫ ∞

0

e−ρt

[(
x̂i − Γx̂(N) − η

)T

Q (x̃i

−Γx̃(N)
)
+ ûT

i R1ũi

−
(
P (x̂(N) + s)

)T

R−1
2 (P x̃(N) + s̃)

]
dt.

From Lemma 3.1 and Proposition 3.1, J̃i(ũ) ≥ 0 for N ≥ N0.
By Itô’s formula and straightforward computations
N∑
i=1

Ii =
N∑
i=1

E

∫ ∞

0

e−ρt
{
x̃T
i [Qx̂i −Ψx̄− η̄]

+ûT
i R1ũi − (P x̄+ ŝ)T R−1

2 P x̃i

}
dt

+

N∑
i=1

E

∫ ∞

0

e−ρtξT [(Ψ− PR−1
2 P )x̃i − PR−1

2 s̃]dt

−NE

∫ ∞

0

e−ρt(P x̄+ ŝ)TR−1
2 s̃dt

=

N∑
i=1

E

∫ ∞

0

e−ρt
[
ξT (Ψ− PR−1

2 P +KG)x̃i

+ (k̂(N) − v)T (Ḡx̃i −R−1
2 s̃)

+((P +K)x̃i + s̃)R−1
2 (s̄− ŝ)

]
dt.

From (B.1) and (B.5), we obtain

1

N

N∑
i=1

Ii = O(1/
√
N).

�
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